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An approximation method and distributional inequalities are used to generalize a
classical lemma due to van der Corput.

INTRODUCTION

The lemma of J. G. van der Corput that is considered here has been fruit-
fully applied in Fourier analysis and in analytic number theory in estimating
trignometric integrals and the Riemann zeta function. In [4], Zygmund states
that it is of considerable interest in itself. In this work a distribution theory
version of this lemma is obtained which weakens the hypothesis.

NOTATION AND PRELIMINARIES

The space of test functions on the open interval (a,b) is denoted by
“(a, b); its dual space &'(a, b) is the set of distributions in (a, &). For
fE L] (a,b) (the space of locally Lebesgue integrable functions on (a, b)),
T, is its associated distribution in & '(a, b) and & "T, is the nth distributional
derivative of f.

Let K be an even nonnegative test function having support |1, 1] and
J', K(t) dt = 1. Then the regularizations of f€ L/ .(a, b) relative to K is the
set {f,} defined by

fix) = [' fex—e)K(@)dt  for xin(a+eb—e).
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DiISTRIBUTIONAL INEQUALITIES

The following results and |1]| suggest a possible entire theory of
distributional inequalities.

DeriniTION 1. For T, T, in &'(a,b), |T,|> T, means that [T () >
T,(¢) for all nonnegative ¢ in < (a, b).

LEMMA 2. Let T, be the distribution defined by the constant function
A > 0, and suppose that T € &'(a, b) satisfies |T| > T, in (a, b). Then either
T>T, or T<—T,; holds exclusively in (a, b).

Proof. Suppose that there were nonnegative (but not identically zero) test
functions ¢, and ¢, in (a, b) such that T(g,) > T (¢,) = [2 A¢,(t)dr > O and
T{¢,) < —T,(¢,) < 0. Let C=—T(¢,)/T(¢,) > 0. Then T(o, + C¢,) =0 and
Ty(g, + Co,) > 0, since ¢, + Cg¢, is a nonnegative test function in (a, b) and
is not identically zero. The result now follows by contradiction.

For a real-valued function f. let

b
| e dr J, where (a, b) may be unbounded.

Y a

I(fia.b)=

van der Corput’s Lemma (For a proof see |2, p. 264|): Let fbe a C* convex
function on (a, b) and 1 a positive constant < f”(x): then

1f:a,0) <~

7 -

A

Our goal is the following generalized version.

Lemma 3. Let fbe in L), (a.b) and let A be a positive constant. If

loc

T > T,
holds in (a, b) then 1(f. a, b) converges. and

I(fia.b)<

S 172
A

Proof. By Lemma 2 it suffices to consider the case T, > T, in (a.b),
since otherwise we may replace / by —f. Let /. be a regularization of /
relative to K. For each fixed x in (a + ¢, b — &), the function v - K((x — »)/¢)
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has support [x — &, x + €] < (a, b). Hence, it is a nonnegative test function
on (a, b). Then it follows that

ﬂ(ﬂ%};ﬂ@dy:@sz(%K(x—y))- (1)

1 x+e
[l =5 ] 1)
Since ,@2Tf> T, in (a, b), we have from (1) that for each x in (a + &, b — €},

fIE0>T, (%K(x_y))=ij::u<(";y)dy=j'

€ &

AK(t) dt = A.
]

Thus f7(x) > 4 in (a + &, b — ¢) and van der Corput’s lemma implies that

8
11/2 :

I(f,a+e,b—¢€)<

Because the set of regularizations {f,} converge almost everywhere to f in
(a, &), we can canclude from Lebesgue’s bounded convergence theorem that
I(f:a,b) is convergent and I(fia,b)=lim,_  I(f,;a+¢&b—¢)<8/A"%
This completes the proof.

The following example shows that the distributional inequality condition
in Lemma 3 is essential.

ExampLe. Let g(t)=t— L(t) and G(t) = [} g(x) dx for ¢ € [0, 1], where
L denotes the Cantor function. Since (jL(t)dt=14, we can extend G
periodically to a function G on |0, +00) as follows:

Gi)=G(t—1i) where it<i+1(i=0,1..,).

Then G’ is a continuous function of bounded variation on {0, ] for any
b >0, and G"(¢r) > 1 almost everywhere in (0, +00). However, since |G| < |,
it is easy to see that /(G; 0, b) diverges to +a0 as b —» 0.

Remark. It should be pointed out that if fis convex on (a, b) and f"(¢) >
A > 0 almost everywhere in (a, b) then Lemma 3 is applicable.
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