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An approximation method and distributional inequalities are used to generalize a
classical lemma due to van der Corput.

INTRODUCTION

The lemma of J. G. van der Corput that is considered here has been fruit
fully applied in Fourier analysis and in analytic number theory in estimating
trignometric integrals and the Riemann zeta function. In [4], Zygmund states
that it is of considerable interest in itself. In this work a distribution theory
version of this lemma is obtained which weakens the hypothesis.

NOTATION AND PRELIMINARIES

The space of test functions on the open interval (a, b) is denoted by
9 (a, b); its dual space @'(a, b) is the set of distributions in (a, b). For
fE Lioc(a, b) (the space of locally Lebesgue integrable functions on (a, b)),
Tf is its associated distribution in (j}j' (a, b) and (j}j n Tf is the nth distributional
derivative off

Let K be an even nonnegative test function having support [-I, 1] and
f 1-1 K(t) dt = 1. Then the regularizations of fE Lioc(a, b) relative to K is the
set {Ie l defined by

I

fe(x) = f f(x - et) K(t) dt
. -I
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for x in (a + e, b - e).
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DISTRIBUTIONAL INEQUALITIES

The following results and III suggest a possible entire theory of
distributional inequalities.

DEFINITION I. For T j , T1 in f./ I (a, b), I Til ;;, T~ means that IT I (¢)I ;;,
T1(¢) for all nonnegative ¢ in 'Y' (a, b).

LEMMA 2. Let T, be the distribution defined by the constant function
A> 0, and suppose that T E 0: I (a, b) satisfies ITI ;;, T, in (a, b). Then either
T;;' T, or T ~ - TJ holds exclusively in (a, b).

Proof Suppose that there were nonnegative (but not identically zero) test

functions ¢1 and ¢2 in (a, b) such that T(¢l);;' T\(iPl) = r~ A.~I(t) dt > 0 and
T(¢2) ~ -T,(¢J < O. Let C = -T(¢] )!T(¢l) > O. Then T(¢I + C¢2) = 0 and
T,(¢I + C¢l) > 0, since ¢1 + Ctp2 is a nonnegative test function in (a, b) and
is not identically zero. The result now follows by contradiction.

For a real-valued function f tet

/(f; a, b) = I( eif(l) dt I' where (a, b) may be unbounded.

van der Corput's Lemma (For a proof see /2, p. 2641): Let f be a C' convex
function on (a, b) and A a positive constant ~f"(X); then

8
l(f:a,b)~ ,1.1/2'

Our goal is the following generalized version.

LEMMA 3. Let f be in Lioe (a, b) and let A be a positive constant. If

holds in (a, b) then l(f; a, b) converges. and

8
I (f; a. b) ~ --:::-1,0 •It .,

Proof By Lemma 2 it suffices to consider the case V'TI ;;' T, in (a. bl.
since otherwise we may replace f by -f Let fe be a regularization of f
relative to K. For each fixed x in (a + e, b - e). the function y .... K((x - .l')!f;)
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has support [x - e, x +eJ c (a, b). Hence, it is a nonnegative test function
on (a, b). Then it follows that

f~(x) = ~ fx+e f (y/2K «X ~ y)je) dy =~:PTf (~ K (' x - y ,) ). (1)
c x-£ ox . e c

Since f0 2Tf ) T.:t in (a, b), we have from (1) that for each x in (a + e, b - e),

(
1 (X - Y ) ) 1 fX + £ ( X- V ) f If~(x))T.:t -K -- =- AK--' dy= AK(t)dt=A.
e c e x-e e -)

Thusf~(x) ) A in (a + e, b - c) and van der Corput's lemma implies that

8
l(fe a + c, b - e) <J:T72'

Because the set of regularizations {lel converge almost everywhere to f in
(a, b), we can conclude from Lebesgue's bounded convergence theorem that
l(f;a,b) is convergent and l(f;a,b)=limf.~ol(fe;a+e,b-e)<8jA1j2.

This completes the proof.

The following example shows that the distributional inequality condition
in Lemma 3 is essential.

EXAMPLE. Let get) = t - L(t) and G(t) = J~ g(x) dx for t E 10, 1], where
L denotes the Cantor function. Since nL(t) dt = 1, we can extend G
periodically to a function G on [0, +(0) as follows:

G(t) = G(t - i) where i <t < i + 1 (i =0, 1,... ,).

Then GI is a continuous function of bounded variation on [0, b1for any
b> 0, and G"(t) ) 1 almost everywhere in (0, +(0). However, since IGI <1,
it is easy to see that leG; 0, b) diverges to +00 as b -> +00.

Remark. It should be pointed out that iffis convex on (a, b) andf"(t»)
A >°almost everywhere in (a, b) then Lemma 3 is applicable.
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