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An approximation method and distributional inequalities are used to generalize a
classical lemma due to van der Corput.

INTRODUCTION

The lemma of J. G. van der Corput that is considered here has been fruit­
fully applied in Fourier analysis and in analytic number theory in estimating
trignometric integrals and the Riemann zeta function. In [4], Zygmund states
that it is of considerable interest in itself. In this work a distribution theory
version of this lemma is obtained which weakens the hypothesis.

NOTATION AND PRELIMINARIES

The space of test functions on the open interval (a, b) is denoted by
9 (a, b); its dual space @'(a, b) is the set of distributions in (a, b). For
fE Lioc(a, b) (the space of locally Lebesgue integrable functions on (a, b)),
Tf is its associated distribution in (j}j' (a, b) and (j}j n Tf is the nth distributional
derivative off

Let K be an even nonnegative test function having support [-I, 1] and
f 1-1 K(t) dt = 1. Then the regularizations of fE Lioc(a, b) relative to K is the
set {Ie l defined by

I

fe(x) = f f(x - et) K(t) dt
. -I
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for x in (a + e, b - e).
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DISTRIBUTIONAL INEQUALITIES

The following results and III suggest a possible entire theory of
distributional inequalities.

DEFINITION I. For T j , T1 in f./ I (a, b), I Til ;;, T~ means that IT I (¢)I ;;,
T1(¢) for all nonnegative ¢ in 'Y' (a, b).

LEMMA 2. Let T, be the distribution defined by the constant function
A> 0, and suppose that T E 0: I (a, b) satisfies ITI ;;, T, in (a, b). Then either
T;;' T, or T ~ - TJ holds exclusively in (a, b).

Proof Suppose that there were nonnegative (but not identically zero) test

functions ¢1 and ¢2 in (a, b) such that T(¢l);;' T\(iPl) = r~ A.~I(t) dt > 0 and
T(¢2) ~ -T,(¢J < O. Let C = -T(¢] )!T(¢l) > O. Then T(¢I + C¢2) = 0 and
T,(¢I + C¢l) > 0, since ¢1 + Ctp2 is a nonnegative test function in (a, b) and
is not identically zero. The result now follows by contradiction.

For a real-valued function f tet

/(f; a, b) = I( eif(l) dt I' where (a, b) may be unbounded.

van der Corput's Lemma (For a proof see /2, p. 2641): Let f be a C' convex
function on (a, b) and A a positive constant ~f"(X); then

8
l(f:a,b)~ ,1.1/2'

Our goal is the following generalized version.

LEMMA 3. Let f be in Lioe (a, b) and let A be a positive constant. If

holds in (a, b) then l(f; a, b) converges. and

8
I (f; a. b) ~ --:::-1,0 •It .,

Proof By Lemma 2 it suffices to consider the case V'TI ;;' T, in (a. bl.
since otherwise we may replace f by -f Let fe be a regularization of f
relative to K. For each fixed x in (a + e, b - e). the function y .... K((x - .l')!f;)
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has support [x - e, x +eJ c (a, b). Hence, it is a nonnegative test function
on (a, b). Then it follows that

f~(x) = ~ fx+e f (y/2K «X ~ y)je) dy =~:PTf (~ K (' x - y ,) ). (1)
c x-£ ox . e c

Since f0 2Tf ) T.:t in (a, b), we have from (1) that for each x in (a + e, b - e),

(
1 (X - Y ) ) 1 fX + £ ( X- V ) f If~(x))T.:t -K -- =- AK--' dy= AK(t)dt=A.
e c e x-e e -)

Thusf~(x) ) A in (a + e, b - c) and van der Corput's lemma implies that

8
l(fe a + c, b - e) <J:T72'

Because the set of regularizations {lel converge almost everywhere to f in
(a, b), we can conclude from Lebesgue's bounded convergence theorem that
l(f;a,b) is convergent and l(f;a,b)=limf.~ol(fe;a+e,b-e)<8jA1j2.

This completes the proof.

The following example shows that the distributional inequality condition
in Lemma 3 is essential.

EXAMPLE. Let get) = t - L(t) and G(t) = J~ g(x) dx for t E 10, 1], where
L denotes the Cantor function. Since nL(t) dt = 1, we can extend G
periodically to a function G on [0, +(0) as follows:

G(t) = G(t - i) where i <t < i + 1 (i =0, 1,... ,).

Then GI is a continuous function of bounded variation on [0, b1for any
b> 0, and G"(t) ) 1 almost everywhere in (0, +(0). However, since IGI <1,
it is easy to see that leG; 0, b) diverges to +00 as b -> +00.

Remark. It should be pointed out that iffis convex on (a, b) andf"(t»)
A >°almost everywhere in (a, b) then Lemma 3 is applicable.
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